function name
函数对象有一个name属性,可以拿到函数的名字:
def now():
print('2015-09-23')
>>>now.__name__
'name'
Decorator
在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator) 本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
use @
syntax
@log
def now():
print('2015-0-23')
把@log
放到now()
函数的定义处,相当于执行了语句:
now = log(now)
wrapper()函数的参数定义是(args, *kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。
decorator with arguments
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
这个3层嵌套的decorator用法如下:
@log('execute')
def now():
print('2015-3-25')
和两层嵌套的decorator相比,3层嵌套的效果是这样的:
>>> now = log('execute')(now)
function name
但你去看经过decorator装饰之后的函数,它们的__name__
已经从原来的'now'变成了'wrapper':
>>> now.__name__
'wrapper'
因为返回的那个wrapper()函数名字就是'wrapper',所以,需要把原始函数的name等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
Summary
在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。