Unique Binary Search Tree
题目描述
Given n, how many structurally unique BST's (binary search trees) that store values 1...n
?
For example,
Given n = 3
, there are a total of 5
unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
解题方法
这种求数量的,可以往DP的方向想。
当以i
为root时,左子树就是[1:i]
, 右子树就是[i+1:n+1]
构成,而左子树和右子树的root又可以从每一个Index遍历的选一遍。
count[i]
表示到正整数i为止的unique bst的数量,其实就是root为0-i都选一遍,可以写几个数的结果来找找感觉。
n = 0: 只能为空,count[0] = 1
n = 1: 一种,count[1] = 1
n = 2: 1可以做root,2也可以做root
count[2] = count[0] * count[1](1为root) + count[1] * count[0](2为root)
n = 3: 1,2,3都可以做root
count[3] = count[0] * count[2](1为root) + count[1] * count[1](2为root) + count[2] + count[0](3为root)
可以发现的规律是对于count[i]
for j in range(0, i):
# 做root的也占据了一个数字,所以是0到i-1
count[i] += count[j] * count[i-1-j]
Solution
class Solution(object):
def numTrees(self, n):
"""
:type n: int
:rtype: int
"""
if n == 0:
return 1
count = [0 for i in range(n+1)]
count[0] = 1
for i in range(1, n+1):
for j in range(0, i):
count[i] += count[j] * count[i-j-1]
return count[n]