Edit Distance
题目描述
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
解题方法
这种求minimum的问题,并且前后子问题之间有关系,可以直觉地往DP方面去想。
state
dp[i][j]
表示word[:i]
和word[:j]
的minimum edit distance
init status
dp[i][0] = i
dp[0][j] = j
这种情况下只有insert相应个数的字符
function
DP的关键就是找前后两种状态之间的关系,那么dp[i][j]
之前的关系也是跟三种操作有关
- word1 insert one character
dp[i][j] = dp[i-1][j] + 1
- word2 delete one character(it's actually the same as insert)
- 'dp[i][j] = dp[i][j-1] + 1'
- replace a character
+ 在考虑replace的时候,因为我们是找与之前的状态的关系,所以我们只用考虑
当期新增的character的改变,而不需要考虑之前的edit
- 所以也就有两种可能,取决于word1[i-1]是否等于word2[j-1]
Solution
class Solution(object):
def minDistance(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
length1 = len(word1)
length2 = len(word2)
dp = [[sys.maxint for i in range(length2+1)] for j in range(length1+1)]
dp[0][0] = 0
for i in range(length1+1):
dp[i][0] = i
for j in range(length2+1):
dp[0][j] = j
for i in range(1, length1+1):
for j in range(1, length2+1):
a = dp[i-1][j] + 1
b = dp[i][j-1] + 1
if word1[i-1] == word2[j-1]:
c = dp[i-1][j-1]
else:
c = dp[i-1][j-1] + 1
dp[i][j] = min(a, b, c)
return dp[length1][length2]