Distinct Subsequences
Question
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
Example
Given S = "rabbbit", T = "rabbit", return 3.
Challenge
Do it in O(n2) time and O(n) memory.
O(n2) memory is also acceptable if you do not know how to optimize memory.
Thoughts
dp[i][j]表示S前i个与T前j个的distinct subsequences number
init state
dp[0][j] = 0 dp[i][0] = 1 (问清楚这个应该是多少)
connection function
如果S[i-1] == T[j-1]
, 那么既有dp[i-1][j-1]
的数量(直接加上S最后的char),也有dp[i-1][j]
的数量(不用这个S的char),
if S[i-1] == T[j-1]:
dp[i][j] = dp[i-1][i-1] + dp[i-1][j]
else:
dp[i][j] = dp[i-1][j-1]
final result
dp[len(S)][len(T)]
Solution
class Solution:
# @param S, T: Two string.
# @return: Count the number of distinct subsequences
def numDistinct(self, S, T):
# write your code here
if not S:
return 0
if not T:
return 1
dp = [[0 for j in range(len(T)+1)] for i in range(len(S)+1)]
for j in range(len(T)+1):
dp[0][j] = 0
for i in range(len(S)+1):
dp[i][0] = 1
for i in range(1, len(S)+1):
for j in range(1, len(T)+1):
if S[i-1] == T[j-1]:
dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
else:
dp[i][j] = dp[i-1][j]
return dp[len(S)][len(T)]