Minimum Size Subarray Sum
Question
Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return -1 instead.
Example
Given the array [2,3,1,2,4,3] and s = 7, the subarray [4,3] has the minimal length under the problem constraint.
Challenge
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Thoughts
如果发现了一个[i,j], sum >= s, 那么之后的[i, j+1], [i, j+2]....都不用看了 保持j的位置,减去i的元素直到找到一个新的符合条件的subarray
Solution
class Solution:
# @param nums: a list of integers
# @param s: an integer
# @return: an integer representing the minimum size of subarray
def minimumSize(self, nums, s):
# write your code here
i = 0
j = 0
sum = 0
ans = sys.maxint
for i in range(len(nums)):
while j < len(nums) and sum < s:
sum += nums[j]
j += 1
if sum >= s:
ans = min(j-i, ans)
sum -= nums[i]
if ans == sys.maxint:
return -1
else:
return ans