Interval Sum II
Question
Given an integer array in the construct method, implement two methods query(start, end) and modify(index, value):
For query(start, end), return the sum from index start to index end in the given array.
For modify(index, value), modify the number in the given index to value
Example
Given array A = [1,2,7,8,5].
query(0, 2), return 10.
modify(0, 4), change A[0] from 1 to 4.
query(0, 1), return 6.
modify(2, 1), change A[2] from 7 to 1.
query(2, 4), return 14.
Thoughts
Solution
memory limit exceeded ...
class Solution:
# @param A: An integer list
def __init__(self, A):
# write your code here
self.segT = SegmentTree()
length = len(A)
self.root = self.segT.build(0, length)
for idx, num in enumerate(A):
self.segT.modify(self.root, idx, num)
# @param start, end: Indices
# @return: The sum from start to end
def query(self, start, end):
# write your code here
res = 0
res = self.segT.query(self.root, start, end)
return res
# @param index, value: modify A[index] to value.
def modify(self, index, value):
# write your code here
self.segT.modify(self.root, index, value)
class SegmentTree:
def __init__(self):
self.root = None
def build(self, start, end):
if start > end:
return None
root = SegmentTreeNode(start, end, 0)
if start < end:
mid = (start + end) / 2
root.left = self.build(start, mid)
root.right = self.build(mid+1, end)
else:
root.count = 0
return root
def query(self, root, start, end):
if not root:
return 0
rStart = root.start
rEnd = root.end
if (rStart > end) or ( rEnd < start):
return 0
#should be >= and <=
#if query range if larger than the segment tree range, just return the count
if rStart >= start and rEnd <= end:
return root.count
leftCount = 0
rightCount = 0
mid = (rStart + rEnd) / 2
if start <= mid:
if end > mid:
#some range are in right part
leftCount = self.query(root.left, start, mid)
else:
leftCount = self.query(root.left, start, end)
if mid < end:
if start <= mid:
#some range are in left part
#right part should start with mid + 1
rightCount = self.query(root.right, mid + 1, end)
else:
rightCount = self.query(root.right, start, end)
return leftCount + rightCount
def modify(self, root, index, value):
if root.start == index and root.end == index:
root.count = value
return
mid = (root.start + root.end) / 2
if root.start <= index and index <= mid:
self.modify(root.left, index, value)
elif root.end >= index and index > mid:
self.modify(root.right, index, value)
root.count = root.left.count + root.right.count
java code
public class Solution {
/* you may need to use some attributes here */
class SegmentTreeNode {
public int start, end;
public int sum;
public SegmentTreeNode left, right;
public SegmentTreeNode(int start, int end, int sum) {
this.start = start;
this.end = end;
this.sum = sum;
this.left = this.right = null;
}
}
SegmentTreeNode root;
public SegmentTreeNode build(int start, int end, int[] A) {
// write your code here
if(start > end) { // check core case
return null;
}
SegmentTreeNode root = new SegmentTreeNode(start, end, 0);
if(start != end) {
int mid = (start + end) / 2;
root.left = build(start, mid, A);
root.right = build(mid+1, end, A);
root.sum = root.left.sum + root.right.sum;
} else {
root.sum = A[start];
}
return root;
}
public int querySegmentTree(SegmentTreeNode root, int start, int end) {
// write your code here
if(start == root.start && root.end == end) { // 相等
return root.sum;
}
int mid = (root.start + root.end)/2;
int leftsum = 0, rightsum = 0;
// 左子区
if(start <= mid) {
if( mid < end) { // 分裂
leftsum = querySegmentTree(root.left, start, mid);
} else { // 包含
leftsum = querySegmentTree(root.left, start, end);
}
}
// 右子区
if(mid < end) { // 分裂 3
if(start <= mid) {
rightsum = querySegmentTree(root.right, mid+1, end);
} else { // 包含
rightsum = querySegmentTree(root.right, start, end);
}
}
// else 就是不相交
return leftsum + rightsum;
}
public void modifySegmentTree(SegmentTreeNode root, int index, int value) {
// write your code here
if(root.start == index && root.end == index) { // 查找到
root.sum = value;
return;
}
// 查询
int mid = (root.start + root.end) / 2;
if(root.start <= index && index <=mid) {
modifySegmentTree(root.left, index, value);
}
if(mid < index && index <= root.end) {
modifySegmentTree(root.right, index, value);
}
//更新
root.sum = root.left.sum + root.right.sum;
}
/**
* @param A: An integer array
*/
public Solution(int[] A) {
// write your code here
root = build(0, A.length-1, A);
}
/**
* @param start, end: Indices
* @return: The sum from start to end
*/
public long query(int start, int end) {
// write your code here
return querySegmentTree(root, start ,end);
}
/**
* @param index, value: modify A[index] to value.
*/
public void modify(int index, int value) {
// write your code here
modifySegmentTree(root, index, value);
}
}